3.6.52 \(\int \frac {(a+c x^2)^{5/2}}{(d+e x)^4} \, dx\) [552]

3.6.52.1 Optimal result
3.6.52.2 Mathematica [A] (verified)
3.6.52.3 Rubi [A] (verified)
3.6.52.4 Maple [B] (verified)
3.6.52.5 Fricas [B] (verification not implemented)
3.6.52.6 Sympy [F]
3.6.52.7 Maxima [F(-2)]
3.6.52.8 Giac [B] (verification not implemented)
3.6.52.9 Mupad [F(-1)]

3.6.52.1 Optimal result

Integrand size = 19, antiderivative size = 222 \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=-\frac {5 c \left (4 c d^2+a e^2+2 c d e x\right ) \sqrt {a+c x^2}}{2 e^5 (d+e x)}+\frac {5 c (2 d+e x) \left (a+c x^2\right )^{3/2}}{6 e^3 (d+e x)^2}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}+\frac {5 c^{3/2} \left (4 c d^2+a e^2\right ) \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 e^6}+\frac {5 c^2 d \left (4 c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{2 e^6 \sqrt {c d^2+a e^2}} \]

output
5/6*c*(e*x+2*d)*(c*x^2+a)^(3/2)/e^3/(e*x+d)^2-1/3*(c*x^2+a)^(5/2)/e/(e*x+d 
)^3+5/2*c^(3/2)*(a*e^2+4*c*d^2)*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/e^6+5/2 
*c^2*d*(3*a*e^2+4*c*d^2)*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a 
)^(1/2))/e^6/(a*e^2+c*d^2)^(1/2)-5/2*c*(2*c*d*e*x+a*e^2+4*c*d^2)*(c*x^2+a) 
^(1/2)/e^5/(e*x+d)
 
3.6.52.2 Mathematica [A] (verified)

Time = 2.66 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.03 \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=-\frac {\frac {e \sqrt {a+c x^2} \left (2 a^2 e^4+a c e^2 \left (5 d^2+15 d e x+14 e^2 x^2\right )+c^2 \left (60 d^4+150 d^3 e x+110 d^2 e^2 x^2+15 d e^3 x^3-3 e^4 x^4\right )\right )}{(d+e x)^3}-\frac {30 c^2 d \left (4 c d^2+3 a e^2\right ) \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\sqrt {-c d^2-a e^2}}+15 c^{3/2} \left (4 c d^2+a e^2\right ) \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{6 e^6} \]

input
Integrate[(a + c*x^2)^(5/2)/(d + e*x)^4,x]
 
output
-1/6*((e*Sqrt[a + c*x^2]*(2*a^2*e^4 + a*c*e^2*(5*d^2 + 15*d*e*x + 14*e^2*x 
^2) + c^2*(60*d^4 + 150*d^3*e*x + 110*d^2*e^2*x^2 + 15*d*e^3*x^3 - 3*e^4*x 
^4)))/(d + e*x)^3 - (30*c^2*d*(4*c*d^2 + 3*a*e^2)*ArcTan[(Sqrt[c]*(d + e*x 
) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/Sqrt[-(c*d^2) - a*e^2] + 1 
5*c^(3/2)*(4*c*d^2 + a*e^2)*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/e^6
 
3.6.52.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {492, 590, 27, 681, 27, 719, 224, 219, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx\)

\(\Big \downarrow \) 492

\(\displaystyle \frac {5 c \int \frac {x \left (c x^2+a\right )^{3/2}}{(d+e x)^3}dx}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 590

\(\displaystyle \frac {5 c \left (\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}-\frac {3 \int -\frac {2 (a e-2 c d x) \sqrt {c x^2+a}}{(d+e x)^2}dx}{4 e^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 c \left (\frac {3 \int \frac {(a e-2 c d x) \sqrt {c x^2+a}}{(d+e x)^2}dx}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 681

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {\int \frac {2 c \left (2 a d e-\left (4 c d^2+a e^2\right ) x\right )}{(d+e x) \sqrt {c x^2+a}}dx}{2 e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \int \frac {2 a d e-\left (4 c d^2+a e^2\right ) x}{(d+e x) \sqrt {c x^2+a}}dx}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \left (\frac {d \left (3 a e^2+4 c d^2\right ) \int \frac {1}{(d+e x) \sqrt {c x^2+a}}dx}{e}-\frac {\left (a e^2+4 c d^2\right ) \int \frac {1}{\sqrt {c x^2+a}}dx}{e}\right )}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \left (\frac {d \left (3 a e^2+4 c d^2\right ) \int \frac {1}{(d+e x) \sqrt {c x^2+a}}dx}{e}-\frac {\left (a e^2+4 c d^2\right ) \int \frac {1}{1-\frac {c x^2}{c x^2+a}}d\frac {x}{\sqrt {c x^2+a}}}{e}\right )}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \left (\frac {d \left (3 a e^2+4 c d^2\right ) \int \frac {1}{(d+e x) \sqrt {c x^2+a}}dx}{e}-\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (a e^2+4 c d^2\right )}{\sqrt {c} e}\right )}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \left (-\frac {d \left (3 a e^2+4 c d^2\right ) \int \frac {1}{c d^2+a e^2-\frac {(a e-c d x)^2}{c x^2+a}}d\frac {a e-c d x}{\sqrt {c x^2+a}}}{e}-\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (a e^2+4 c d^2\right )}{\sqrt {c} e}\right )}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {5 c \left (\frac {3 \left (-\frac {c \left (-\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (a e^2+4 c d^2\right )}{\sqrt {c} e}-\frac {d \left (3 a e^2+4 c d^2\right ) \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e \sqrt {a e^2+c d^2}}\right )}{e^2}-\frac {\sqrt {a+c x^2} \left (a e^2+4 c d^2+2 c d e x\right )}{e^2 (d+e x)}\right )}{2 e^2}+\frac {\left (a+c x^2\right )^{3/2} (2 d+e x)}{2 e^2 (d+e x)^2}\right )}{3 e}-\frac {\left (a+c x^2\right )^{5/2}}{3 e (d+e x)^3}\)

input
Int[(a + c*x^2)^(5/2)/(d + e*x)^4,x]
 
output
-1/3*(a + c*x^2)^(5/2)/(e*(d + e*x)^3) + (5*c*(((2*d + e*x)*(a + c*x^2)^(3 
/2))/(2*e^2*(d + e*x)^2) + (3*(-(((4*c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a + c 
*x^2])/(e^2*(d + e*x))) - (c*(-(((4*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)/Sqr 
t[a + c*x^2]])/(Sqrt[c]*e)) - (d*(4*c*d^2 + 3*a*e^2)*ArcTanh[(a*e - c*d*x) 
/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e*Sqrt[c*d^2 + a*e^2])))/e^2))/( 
2*e^2)))/(3*e)
 

3.6.52.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 492
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + 1))), x] - Simp[2*b*(p/(d*(n + 1)) 
)   Int[x*(c + d*x)^(n + 1)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, 
d, n}, x] && GtQ[p, 0] && (IntegerQ[p] || LtQ[n, -1]) && NeQ[n, -1] &&  !IL 
tQ[n + 2*p + 1, 0] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
 

rule 590
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
Simp[(-(c + d*x)^(n + 1))*(a + b*x^2)^p*((c*(2*p + 1) - d*(n + 1)*x)/(d^2*( 
n + 1)*(n + 2*p + 2))), x] + Simp[2*(p/(d^2*(n + 1)*(n + 2*p + 2)))   Int[( 
c + d*x)^(n + 1)*(a + b*x^2)^(p - 1)*(a*d*(n + 1) + b*c*(2*p + 1)*x), x], x 
] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0] && LtQ[n, -1] &&  !ILtQ[n + 2*p + 
1, 0]
 

rule 681
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) 
 + e*g*(m + 1)*x)*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2*p + 2))), x] + Simp[p/ 
(e^2*(m + 1)*(m + 2*p + 2))   Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Sim 
p[g*(2*a*e + 2*a*e*m) + (g*(2*c*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x] 
, x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && GtQ[p, 0] && (LtQ[m, -1] || 
EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&  !ILtQ[m + 2 
*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 
3.6.52.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1726\) vs. \(2(194)=388\).

Time = 2.15 (sec) , antiderivative size = 1727, normalized size of antiderivative = 7.78

method result size
risch \(\text {Expression too large to display}\) \(1727\)
default \(\text {Expression too large to display}\) \(3656\)

input
int((c*x^2+a)^(5/2)/(e*x+d)^4,x,method=_RETURNVERBOSE)
 
output
-1/2*c^2*(-e*x+8*d)*(c*x^2+a)^(1/2)/e^5+1/2/e^5*(5*c^(3/2)*(a*e^2+4*c*d^2) 
/e*ln(c^(1/2)*x+(c*x^2+a)^(1/2))+8*c^2*d/e^2*(3*a*e^2+5*c*d^2)/((a*e^2+c*d 
^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^ 
2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))+6 
*c*(a^2*e^4+6*a*c*d^2*e^2+5*c^2*d^4)/e^3*(-1/(a*e^2+c*d^2)*e^2/(x+d/e)*(c* 
(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c*d*e/(a*e^2+c*d^2)/((a 
*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c 
*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x 
+d/e)))-12*c*d*(a^2*e^4+2*a*c*d^2*e^2+c^2*d^4)/e^4*(-1/2/(a*e^2+c*d^2)*e^2 
/(x+d/e)^2*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)+3/2*c*d*e 
/(a*e^2+c*d^2)*(-1/(a*e^2+c*d^2)*e^2/(x+d/e)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+ 
(a*e^2+c*d^2)/e^2)^(1/2)-c*d*e/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln( 
(2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e 
)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))+1/2*c/(a*e^2+c*d^2 
)*e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2* 
((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^ 
(1/2))/(x+d/e)))+1/e^5*(2*a^3*e^6+6*a^2*c*d^2*e^4+6*a*c^2*d^4*e^2+2*c^3*d^ 
6)*(-1/3/(a*e^2+c*d^2)*e^2/(x+d/e)^3*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c 
*d^2)/e^2)^(1/2)+5/3*c*d*e/(a*e^2+c*d^2)*(-1/2/(a*e^2+c*d^2)*e^2/(x+d/e)^2 
*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)+3/2*c*d*e/(a*e^2...
 
3.6.52.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 609 vs. \(2 (195) = 390\).

Time = 2.26 (sec) , antiderivative size = 2501, normalized size of antiderivative = 11.27 \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=\text {Too large to display} \]

input
integrate((c*x^2+a)^(5/2)/(e*x+d)^4,x, algorithm="fricas")
 
output
[1/12*(15*(4*c^3*d^7 + 5*a*c^2*d^5*e^2 + a^2*c*d^3*e^4 + (4*c^3*d^4*e^3 + 
5*a*c^2*d^2*e^5 + a^2*c*e^7)*x^3 + 3*(4*c^3*d^5*e^2 + 5*a*c^2*d^3*e^4 + a^ 
2*c*d*e^6)*x^2 + 3*(4*c^3*d^6*e + 5*a*c^2*d^4*e^3 + a^2*c*d^2*e^5)*x)*sqrt 
(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 15*(4*c^3*d^6 + 3*a* 
c^2*d^4*e^2 + (4*c^3*d^3*e^3 + 3*a*c^2*d*e^5)*x^3 + 3*(4*c^3*d^4*e^2 + 3*a 
*c^2*d^2*e^4)*x^2 + 3*(4*c^3*d^5*e + 3*a*c^2*d^3*e^3)*x)*sqrt(c*d^2 + a*e^ 
2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2* 
sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^ 
2)) - 2*(60*c^3*d^6*e + 65*a*c^2*d^4*e^3 + 7*a^2*c*d^2*e^5 + 2*a^3*e^7 - 3 
*(c^3*d^2*e^5 + a*c^2*e^7)*x^4 + 15*(c^3*d^3*e^4 + a*c^2*d*e^6)*x^3 + 2*(5 
5*c^3*d^4*e^3 + 62*a*c^2*d^2*e^5 + 7*a^2*c*e^7)*x^2 + 15*(10*c^3*d^5*e^2 + 
 11*a*c^2*d^3*e^4 + a^2*c*d*e^6)*x)*sqrt(c*x^2 + a))/(c*d^5*e^6 + a*d^3*e^ 
8 + (c*d^2*e^9 + a*e^11)*x^3 + 3*(c*d^3*e^8 + a*d*e^10)*x^2 + 3*(c*d^4*e^7 
 + a*d^2*e^9)*x), 1/12*(30*(4*c^3*d^6 + 3*a*c^2*d^4*e^2 + (4*c^3*d^3*e^3 + 
 3*a*c^2*d*e^5)*x^3 + 3*(4*c^3*d^4*e^2 + 3*a*c^2*d^2*e^4)*x^2 + 3*(4*c^3*d 
^5*e + 3*a*c^2*d^3*e^3)*x)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2 
)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x 
^2)) + 15*(4*c^3*d^7 + 5*a*c^2*d^5*e^2 + a^2*c*d^3*e^4 + (4*c^3*d^4*e^3 + 
5*a*c^2*d^2*e^5 + a^2*c*e^7)*x^3 + 3*(4*c^3*d^5*e^2 + 5*a*c^2*d^3*e^4 + a^ 
2*c*d*e^6)*x^2 + 3*(4*c^3*d^6*e + 5*a*c^2*d^4*e^3 + a^2*c*d^2*e^5)*x)*s...
 
3.6.52.6 Sympy [F]

\[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=\int \frac {\left (a + c x^{2}\right )^{\frac {5}{2}}}{\left (d + e x\right )^{4}}\, dx \]

input
integrate((c*x**2+a)**(5/2)/(e*x+d)**4,x)
 
output
Integral((a + c*x**2)**(5/2)/(d + e*x)**4, x)
 
3.6.52.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*x^2+a)^(5/2)/(e*x+d)^4,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.52.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 590 vs. \(2 (195) = 390\).

Time = 0.65 (sec) , antiderivative size = 590, normalized size of antiderivative = 2.66 \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=\frac {1}{2} \, \sqrt {c x^{2} + a} {\left (\frac {c^{2} x}{e^{4}} - \frac {8 \, c^{2} d}{e^{5}}\right )} - \frac {5 \, {\left (4 \, c^{\frac {5}{2}} d^{2} + a c^{\frac {3}{2}} e^{2}\right )} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right )}{2 \, e^{6}} - \frac {5 \, {\left (4 \, c^{3} d^{3} + 3 \, a c^{2} d e^{2}\right )} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right )}{\sqrt {-c d^{2} - a e^{2}} e^{6}} - \frac {60 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{5} c^{3} d^{3} e^{2} + 27 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{5} a c^{2} d e^{4} + 210 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} c^{\frac {7}{2}} d^{4} e + 27 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} a c^{\frac {5}{2}} d^{2} e^{3} - 18 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{4} a^{2} c^{\frac {3}{2}} e^{5} + 188 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} c^{4} d^{5} - 226 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c^{3} d^{3} e^{2} - 84 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a^{2} c^{2} d e^{4} - 354 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {7}{2}} d^{4} e + 24 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a^{3} c^{\frac {3}{2}} e^{5} + 222 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c^{3} d^{3} e^{2} + 57 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{3} c^{2} d e^{4} - 47 \, a^{3} c^{\frac {5}{2}} d^{2} e^{3} - 14 \, a^{4} c^{\frac {3}{2}} e^{5}}{3 \, {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} e + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} \sqrt {c} d - a e\right )}^{3} e^{6}} \]

input
integrate((c*x^2+a)^(5/2)/(e*x+d)^4,x, algorithm="giac")
 
output
1/2*sqrt(c*x^2 + a)*(c^2*x/e^4 - 8*c^2*d/e^5) - 5/2*(4*c^(5/2)*d^2 + a*c^( 
3/2)*e^2)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/e^6 - 5*(4*c^3*d^3 + 3*a* 
c^2*d*e^2)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d 
^2 - a*e^2))/(sqrt(-c*d^2 - a*e^2)*e^6) - 1/3*(60*(sqrt(c)*x - sqrt(c*x^2 
+ a))^5*c^3*d^3*e^2 + 27*(sqrt(c)*x - sqrt(c*x^2 + a))^5*a*c^2*d*e^4 + 210 
*(sqrt(c)*x - sqrt(c*x^2 + a))^4*c^(7/2)*d^4*e + 27*(sqrt(c)*x - sqrt(c*x^ 
2 + a))^4*a*c^(5/2)*d^2*e^3 - 18*(sqrt(c)*x - sqrt(c*x^2 + a))^4*a^2*c^(3/ 
2)*e^5 + 188*(sqrt(c)*x - sqrt(c*x^2 + a))^3*c^4*d^5 - 226*(sqrt(c)*x - sq 
rt(c*x^2 + a))^3*a*c^3*d^3*e^2 - 84*(sqrt(c)*x - sqrt(c*x^2 + a))^3*a^2*c^ 
2*d*e^4 - 354*(sqrt(c)*x - sqrt(c*x^2 + a))^2*a*c^(7/2)*d^4*e + 24*(sqrt(c 
)*x - sqrt(c*x^2 + a))^2*a^3*c^(3/2)*e^5 + 222*(sqrt(c)*x - sqrt(c*x^2 + a 
))*a^2*c^3*d^3*e^2 + 57*(sqrt(c)*x - sqrt(c*x^2 + a))*a^3*c^2*d*e^4 - 47*a 
^3*c^(5/2)*d^2*e^3 - 14*a^4*c^(3/2)*e^5)/(((sqrt(c)*x - sqrt(c*x^2 + a))^2 
*e + 2*(sqrt(c)*x - sqrt(c*x^2 + a))*sqrt(c)*d - a*e)^3*e^6)
 
3.6.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+c x^2\right )^{5/2}}{(d+e x)^4} \, dx=\int \frac {{\left (c\,x^2+a\right )}^{5/2}}{{\left (d+e\,x\right )}^4} \,d x \]

input
int((a + c*x^2)^(5/2)/(d + e*x)^4,x)
 
output
int((a + c*x^2)^(5/2)/(d + e*x)^4, x)